Silvia Bonaccorsi

1977: Laurea (Degree) cum laude in Biology, "Sapienza" Università di Roma
1978-1982: University fellow, "Sapienza" Università di Roma.
1982-2001: CNR researcher c/o Centro di Genetica Evoluzionistica del CNR
1983: Recipient of an EMBO-short term fellowship for a three month-stay in Dr. W. Hennig lab., Dept. of Genetics, Catholic University, Njimegen
1986: Three month-stay in Dr. A. Lohe lab., Dept. of Entomology, CSIRO, Canberra
1992: Recipient of an EMBO-short term fellowship for a two month stay in Dr. C. Goday lab., Centro de Investigaciones Biologicas, CSIC, Madrid.
2001-2002: Ricercatore CNR c/o Centro di Genetica Evoluzionistica del CNR
2002-2007: Primo Ricercatore CNR c/o Istituto di Biologia e Patologia Molecolari del CNR
November 2007-2010: Full professor, I Facoltà di Medicina e Chirurgia, "Sapienza" Università di Roma
July 2010-present: Full professor, Facoltà di Scienze Matematiche, Fisiche e Naturali, "Sapienza" Università di Roma
2014-present: Coordinator of the PhD programme in Genetics and Molecular Biology, "Sapienza" Università di Roma

My research activity is mainly focused on the structural and functional characterization of heterochromatin and the genetic control of chromosome stability and cell division using Drosophila as a model system.

Structure and function of heterochromatin and control of chromosome stability
Using a variety of techniques we differentiated the completely heterochromatic Drosophila Y chromosome into 25 discrete regions and defined the DNA sequences they contain. In addition, by combining banding techniques with genetic analysis we performed a molecular and functional characterization of the Y chromosome male fertility genes. More recently, we have carried out a detailed analysis of the chromosomal phenotype elicited by mutations in timeless2 (tim2), topoisomerase II (Top2) and citron kinase (Citk/sti).

Genetic control of cell division.
In the past 20 years I focused my research on the identification and molecular characterization of genes that control cytokinesis and spindle assembly. The genes involved in cytokinesis include: twinstar (tsr), which encodes a Drosophila cofilin-like protein; chickadee (chic), which specifies the actin-polymerizing protein profilin; fascetto (feo), which encodes the Drosophila homologue of human PRC1; and the Citron kinase coding gene. The phenotypes elicited by mutations at these loci allowed us to propose that the central spindle and the actomyosin-based contractile ring are interdependent structures.

We have also characterized the mechanisms of spindle assembly in different cell types, such as larval neuroblasts, ganglion mother cells and spermatocytes. The cytological characterization of a variety of mutants affecting the division of these cells allowed us to assess the relative roles of centrosomal and chromosome-driven microtubules in spindle formation. Finally, we characterized some genes controlling centrosome structure and/or dynamics, such as asterless (asl), DSpd-2 and morgana, whose human orthologues are implicated in severe pathologies.

Bonaccorsi S., Pisano C., Puoti F. and Gatti M. (1988) Y chromosome loops in Drosophila melanogaster. Genetics 120, 1015-1034.

Bonaccorsi S. and Lohe A. (1991) Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between satellite sequences and fertility factors. Genetics 129: 177-189.

Pimpinelli S., Berloco M., Fanti L., Dimitri P., Bonaccorsi S., Marchetti E., Caizzi R., Caggese C. and Gatti M. (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA, 92: 3804-3808.

Gunsalus K. C.*, Bonaccorsi S.*, Williams E., Vernì F., Gatti M. and Goldberg M. L. (1995) Mutations in twinstar, a Drosophila cofilin/ADF homolog, result in defects in centrosome migration and cytokinesis. J. Cell Biol., 131: 1243-1259. * co-first authors

Giansanti M.G., Bonaccorsi S., Williams B., Williams E. V. Santolamazza C., Goldberg M. L. and Gatti M. (1998) Cooperative interactions between the central spindle and the contractile ring during Drosophila cytokinesis. Genes Dev. 12: 396-410.

Bonaccorsi S., Giansanti M. G. and Gatti M. (1998) Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster. J. Cell Biol. 142: 751-761

Bonaccorsi S., Giansanti M. G. and Gatti M. (2000) Spindle assembly in Drosophila neuroblasts and ganglion mother cells. Nature Cell Biol. 2: 54-56.

Wakefield J. G., Bonaccorsi S. and Gatti M. (2001) The Drosophila protein Asp is involved in microtubule organization during spindle formation and cytokinesis. J. Cell Biol. 153: 637-647.

Bucciarelli E., Giansanti M. G., Bonaccorsi S. and Gatti M. (2003) Spindle assembly and cytokinesis in the absence of chromosomes during Drosophila male meiosis. J. Cell Biol. 160: 993-999.

Vernì F., Somma M. P, Gunsalus K. C., Bonaccorsi S., Belloni G., Goldberg M. L., and Gatti M. (2004) Feo, the Drosophila homolog of PRC1, is required for central-spindle formation and cytokinesis. Curr. Biol. 14: 1569-1575.

Naim V., Imarisio S., Di Cunto F., Gatti M. and Bonaccorsi S. (2004) Drosophila citron kinase is required for the final steps of cytokinesis. Mol. Biol. Cell. 15: 5053-5063.

Giansanti M. G., Bonaccorsi S., Kurek R., Farkas R. M., Dimitri P., Fuller M. T., Gatti M. (2006) The class I PITP giotto is required for Drosophila cytokinesis. Curr. Biol. 16: 195-201.

Bonaccorsi S., Mottier V., Giansanti M. G., Bolkan B. J., Williams B., Goldberg M.L. and Gatti M.

(2007) The Drosophila Lkb1 kinase is required for spindle formation and asymmetric neuroblast division. Development 134: 2183-2193.

Giansanti M. G., Bucciarelli E., Bonaccorsi S. and Gatti M. (2008) Drosophila SPD-2 is an essential centriole component required for PCM recruitment and astral-microtubule nucleation. Curr. Biol. 18: 303-309.

Benna C., Bonaccorsi S., Wülbeck C., Helfrich-Förster, Gatti M., Charalambos P. Kyriacou C. P., Costa R Sandrelli F. (2010) Drosophila timeless 2 is required for chromosome stability and circadian photoreception. Curr. Biol. 20: 346-352.

Ferretti R., Palumbo V., Di Savino A., Velasco S., Sbroggiò M., Sportoletti M., Micale L., Turco E., Silengo L., Palumbo G., Hirsch E., Teruya-Feldstein J., Bonaccorsi S., Pandolfi P. P., Gatti M., Tarone G. and Brancaccio M. (2010) Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. Dev. Cell 18: 486-495.

Mottier-Pavie V., Cenci G., Vernì F., Gatti M. and Bonaccorsi S. (2011) Phenotypic analysis of misato function reveals roles of noncentrosomal microtubules in Drosophila spindle formation. J. Cell Sci. 124: 706-717.

Mengoli V., Bucciarelli E., Lattao M., Piergentili R., Gatti M. and Bonaccorsi S. (2014) The analysis of mutant alleles of different strenght reveals multiple functions of Topoisomerase 2 in regulation of Drosophila chromosome structure. PLOS Genetics 10:e1004739.

Palumbo V., Pellacani C., Heesom K.J., Rogala K.B., Deane C.M., Mottier-Pavie V., Gatti M., Bonaccorsi S*., Wakefield J.G.* (2015) Misato controls Mitotic Microtubule Generation by stabilizing the TCP-1 Tubulin Chaperone Complex. Curr. Biol. 25:1777-1783. * corresponding authors

Gai M, Bianchi FT, Vagnoni C, Vernì F, Bonaccorsi S, Pasquero S, Berto GE, Sgrò F, Chiotto AM, Annaratone L, Sapino A, Bergo A, Landsberger N, Bond J, Huttner WB, Di Cunto F. (2016) ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules. EMBO Rep. 17:1396-1409.

Bianchi FT, Tocco C, Pallavicini G, Liu Y, Vernì F, Merigliano C, Bonaccorsi S, El-Assawy N, Priano L, Gai M, Berto GE, Chiotto AM, Sgrò F, Caramello A, Tasca L, Ala U, Neri F, Oliviero S, Mauro A, Geley S, Gatti M, Di Cunto F. (2017) Citron Kinase Deficiency Leads to Chromosomal Instability and TP53-Sensitive Microcephaly. Cell Rep. 18:1674-1686.

Renda F, Pellacani C, Strunov A, Bucciarelli E, Naim V, Bosso G, Kiseleva E, Bonaccorsi S, Sharp DJ, Khodjakov A, Gatti M, Somma MP. (2017) The Drosophila orthologue of the INT6 oncoprotein regulates mitotic microtubule growth and kinetochore structure. PLoS Genet.

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information